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Fink & Soh (1978) reported a technique to calculate numerically the motion of vortex 
sheets. They claim it gives reliable results. This paper re-examines the error in the 
calculation of the velocity of mesh points representing the sheet and shows that the 
test case used by Fink & Soh is not an adequate one. Instead the roll-up of a vortex 
sheet shed by a ring wing is studied. The results obtained proved unreliable. (Although 
several possibilities are discussed) the reason for the breakdown in results remains 
unknown. 

1. Introduction 
The roll-up of a vortex sheet in an ideal fluid is a problem that has received consider- 

able attention over the years (see a recent review by Saffman & Baker 1979). A 
particular frustration has been the difficulty in obtaining reliable numerical results. 
With the advent of high-speed computers there have been several attempts to study 
vortex sheet roll-up using a discretization first introduced by Rosenhead (1931). He 
replaced the vortex sheet by a finite number of point vortices and considered their 
subsequent motion as marking out the vortex sheet. When the number of point 
vortices was substantially increased, an unsatisfactory feature of the results con- 
sistently emerged. The motion of the point vortices becomes chaotic in the region of 
the vortex sheet roll-up. 

Different modifications have been incorporated to regularize the solution. Kuwahara 
& Takami (1973) and Chorin & Bernard (1973) used discrete vortices to calculate the 
vortex sheet velocity, but there is no adequate accounting of the errors introduced by 
these modifications. Moore (1974) on the other hand recognized the inadequacy of 
representing the innermost terms of the spiral with a finite number of point vortices 
and instead used a central point vortex which grew by amalgamation. His results 
showed better agreement with the similarity solution found by Kaden (1931). How- 
ever, he observed an instability developing on the outermost turn of the spiral and it 
is uncertain whether its origin is numerical or physical. 

Fink & Soh (1978) are the first authors to present error estimates for the point vortex 
approximation to a vortex sheet. In particular, they show that, unless the vortices are 
evenly spaced in arclength, the error in calculating the velocity a t  one of the vortices 
is O(lnh,/h,), where h, and h, are the adjacent spacings with its neighbours. This 
suggests that, as the vortex points move and lose their uniform spacing, the error in 
calculating their velocities will grow and eventually destroy the description of the 
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vortex sheet. Fink & Soh (1978) therefore propose a method whereby the vortices are 
continually redistributed to ensure uniform spacing. They applied their method to 
the roll-up of a vortex sheet shed by an elliptically loaded wing, but included a single- 
vortex representation for the inner region of the spiral. They claim their results 
demonstrate the reliability of their technique. 

In support of their claim they have made estimates of the error in calculating the 
sheet velocity. However, their estimates are misleading and one purpose of this paper 
is to provide more careful error estimates. If the sheet forms an open curve, for 
example the sheet rolling up behind an elliptical loaded wing, the error becomes large 
in the central region of the spiral even if infinitely many evenly spaced points could be 
chosen to represent the sheet. It is difficult to assess the errors if a finite number of 
points are chosen to represent the sheet together with a single-vortex approximation 
for the inner region of the spiral. This case, therefore, does not provide a straight- 
forward test of their method. 

On the other hand, there is no such difficulty for the vortex sheet forming a closed 
curve, for example the vortex sheet shed by a ring wing, and this case is studied as a 
definite test of the method. The method fails to produce reliable results; the sheet 
crosses itself. Although several possibilities are discussed, no definitive reason is found 
for the breakdown. Fundamental questions remain about the nature of vortex sheets 
and whether numerical methods can adequately treat their motion. 

2. Error analysis for velocity calculation 
For an ideal fluid containing a vortex sheet, the complex-conjugate velocity field, 

q = u - iv, can be expressed as an integral of the vortex-sheet strength y(s) along the 
sheet, z(s)  = 4 5 )  + iy(s), which is parametrized by its arclength s, 

- 

where Q is an irrotational velocity field that takes into account the presence of boun- 
daries and any other external flow. It is assumed that the velocity field Q is known or 
that it may be calculated accurately without difficulty, and so may be ignored for 
our purposes. The velocity of the sheet (at z(so) say) is given by the principal-value 
integral 

First consider the sheet as a closed curve. The integrand in (2.2) is now periodic 
and the integral may be written as 

where 2L is the period. Subtracting from (2.3) the integral 

* so+L y(sO)ds -L$ = 0, 
2n-i @ - L  z'(so) (s - so) 
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a new integrand, f (s) ,  is obtained, where 

( 2 . 5 )  

(The prime refers to  differentiation with respect to s.) 
This integrand has a removable singularity a t  so and no other singularities provided 

the sheet is smooth, i.e. i t  has a continuous tangent, and y has no singularities. 
I n  fact, we assume that f ( s )  E C ~ ~ + ~ [  - L, L] and we introduce a mesh s = {so + nh}, 
- N  < n,< N , N h  = L. 

The Euler-McLaurin summation formula yields the following expression : 

so+L h N +  1 

f (8) ds = - {f (so - L)  +f( so  + L)} + h Z f ( s o  + nh) 
n = N - 1  2 

m ... 
+ cP h2P+2( f (2p+1)(sO + L)  - f (2p+1)(sO - L )  + cmh2m+2 (2m+l) f ( C ) I  (2.6) 

p = o  

where cI, are constants independent of h and f (s ) .  The bracketed superscript refers 
to the order of differentiation with respect to s and EE [so - L, so + L] .  The first two 
terms on the right-hand side are the trapezoidal approximation to the integral. Since 
the first term off ( s )  is periodic and l/(s-so) is an odd function about so, the trape- 
zoidal approximation becomes 

where 

(2.7) 

This expression may be simplified by using the identities z’Z’ = 1 and 2”z’ + z”Z’ = 0. 
Thus 

(2.9) 
1 

f (80) = - 2ni - {Y’@O) Z’(s0) + M s o )  Z”(s0)). 

The source of errors in the approximation, equations (2 .7)  and (2.9), is twofold; 
there is an error in approximating f (so) by finite differences and there are additional 
terms from (2.6), namely 

m 

p=o 
cnh2~+2{f(2P+1)(sO+ L ) - f @ p + l )  (so-L)}+c,h2m+2f(2m+U(~). (2.10) 

The periodicity of the first term in f ( s )  and the evenness of the odd derivatives of 
l / ( s  -so) about so ensure there is no contribution to the sum in (2.10). The dominant 
contribution to the error will be due to the finite-difference approximation of (2.9).  
If standard central differences are used, for example 

(2.11) 

(2.12) 

~ ’ ( s g )  = ( ~ ( $ 0  + h) - z(s0 - h)}/2h,  

~”(80) = ( ~ ( $ 0  + h)  - 2480) + z(s0 - h) ) /h2 ,  

and a similar differencing for y‘(so), the error in using (2.7) and (2.9) will be O(h3). 
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Fink & Soh (1978) use equal spacing in chordlength instead of arclength, which 
introduces a small error, but a far more serious error is their neglect of the curvature 
of the sheet in calculating the principal value of the integral. They have missed the 
second term in (2 .9)  and so the error in their calculations is O(h) and not O(h3) as 
they claim. 

We turn now to the more complicated case where the vortex sheet is an open curve. 
If the open curve has an end-point (at z ( 0 )  say), the velocity is finite there only if 

In  fact when so = 0 the integrand in (2 .2)  is finite everywhere and the trapezoidal 
approximation may be used with an error O(h2). However, for points near the end- 
point, the error is O(h) .  This is most easily seen by considering the error a t  so = h 
(i.e. the point adjacent to the end-point). For convenience, consider thesheet ashaving 
finite length L, for, if not, we run into the difficulty of representing the sheet by a 
finite number of points. As before, our approximation to 4(h) will be 

y(0)  = 0. 

h N-1 h y(nh) -- {y‘(h) z’(h) + &y(h)z”(h)}, G nz2 z(h.) -z(nh) 2772 

where N h  = L. We obtain the asymptotic behaviour of the error by applying the 
Euler-McLaurin formula (see equation (2.6)) on [0 ,  L], where f ( s )  is given by (2.5).  
Since 

where y is the Euler-Mascheroni constant. Thus the error is O(h). If we consider 
points further away from the end-point, the O(h) contribution to the error decreases 
and the error behaves more like O(h2). 

If the open curve has no end-points (and so is infinitely long), we employ the Euler- 
McLaurin sum formula on an interval [so - L, so + L] ,  where L may be chosen arbitrarily. 
The sum in (2.10) yields a contribution to the error which, in the limit as L -+ co, is 

These results indicate the difficulty in approximating an infinite vortex sheet which 
is rolled up into a spiral. First, a finite number of mesh points must be used and the 
error in the velocity at the terminal mesh point is difficult to assess. Moreover, as 
more points are added to the central region of the spiral, the error in their velocities 
becomes larger. 

Because of the complexities associated with a sheet of infinite length, this case does 
not provide an adequate test of the method proposed by Fink & Soh (1978). Instead 

O(h2/lz(s,)-z( f 4 1 2 ) .  
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(a) Circular sheet: exact velocity, q = 0.2165063 - 0.125i 

N Calculated u Error in u Calculated w Error in 21 

5 0.2129 180 - 0.003588 - 0.1238720 0.001128 
10 0.2 160345 - 0-000460 -0'1248536 0.000146 
20 0.2 16447 1 - 0.000059 -0.1249822 0.000018 
40 0.2164967 - 0~000010 - 0.1249989 0~00000 1 
80 0.2165025 - 0.000004 - 0.1250024 - 0~000002 

(b) Elliptical sheet: exact velocity, q = 0.6477635 - 0.5300051i 

Calculated w Error in v N Calculated u Error in u 

10 - 0.6465092 0.001254 - 0.5326822 - 0.002677 
20 - 0.6476290 0.000134 - 0.5303204 - 0.0003 15 
40 - 0'6477448 0~000019 - 0.5300345 - 0'000029 

TABLE 1 .  Calculated velocity and errors for varying numbers of intervals. 

a vortex sheet forming a closed curve is studied where the errors in calculating the 
velocity are known precisely. 

Before giving the details of this study, the error analysis is checked for two cases 
where the velocities and hence vortex-sheet strength are both known instantaneously. 
At this stage the motion of the sheet is unimportant; the check is to see how accurately 
the velocity is calculated 'by a mesh evenly distributed in arclength. The central- 
difference approximations, (2.11) and (2.12), are used in conjugation with (2.9) and 
(2.7) as the teat method. 

A combination of velocity potentials inside and outside a unit circle is chosen to 
give a circular vortex sheet of strength y(s) = cos(s), where s = 8. The results of 
calculating the velocity a t  s = -+n are presented in table 1, part (a ) ,  for varying 
numbers of intervals, N .  Each time N is doubled, the error decreases by a factor 8, 
confirming the O(h3) error estimate. For N >, 40, the relative error is and is the 
limit obtainable using single precision on an IBM/370/158. The other case is an ellip- 
tical sheet, $x2+ y2 = 1,  enclosing a stagnant core. The velocity potential for a rotating 
flow outside the ellipse can be calculated using elliptical co-ordinates. A particular 
solution was chosen corresponding to a vortex sheet of strength 

Y = - 2 m -  1 ) 2 + Y  2 4  1 [( x + l )  2+y21f1* 

Table 1, part ( b ) ,  shows typical results, Again good agreement with the error analysis 
is found. 

3. Numerical technique and results 
The details of the method used to study the motion of a vortex sheet forming a closed 

curve differ in slight but important ways from the general method adopted by Fink 
& Soh (1978). In particular the accuracy is improved by keeping the points evenly 
spaced in arclength and by calculating the velocity of the sheet with an error O(h3) 
as described in the previous section. The method falls into three phases; there is the 
time advancement of the mesh points to ensure even spacing along the curve and 
finally the calculation of the change in the vortex-sheet strength. 

First we describe the technique to redistribute the mesh points. Suppose that there 
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are N +  1 mesh points, { z i ( t ) } ,  representing the vortex sheet at a given time t with 
zN+,(t)  = zl(t) since the sheet is a closed curve. The chordlength between mesh points 
is calculated and the total chordlength {hi} measured from zl(t) defines a parametri- 
zation for the sheet: 

i- 1 

j= 1 
hi = 2 ~zj+,(t)--zj(t)~, A, = 0. (3.1) 

Thus {z l ( t ) }  is known as a discrete function of {hi}. An approximate continuous function 
is obtained by using spline interpolation. The derivatives {dz i /dh}  are determined as 
the derivatives of the spline interpolation function at equal intervals in A, {Aei } ,  and 
the arclength {si} is calculated from 

using Simpson's rule. It is preferable to evaluate {dzJdA} at least a t  twice as many 
places as there are mesh points {zi(t)} to determine the arclength {s i }  a t  a sufficient 
number of points. The arclength {si} is now known as a function of {Aei}.  This relation- 
ship is inverted and a spline interpolation used to determine {Asi} corresponding to  even 
spacing in arclength, { iSN+,/N}.  Finally, evenly spaced points on the sheet {zF(t)} are 
obtained by interpolating {zi(t)}, (hi} and {Asi}. Similarly any other variables, e.g. 
circulation, velocity, known a t  either {zi(t)} or {zF(t)} may be interpolated using {hi} 
and {Asi}. The accuracy in this procedure is limited by the choice of the spline inter- 
polation. Since the curve is closed, a spline function which is periodic may be used 
with an error of O(h4). The derivative of the spline function gives an O(h3) approxi- 
mation to the derivatives {dzi/dh} and so the redistribution process is expected to 
have an error of O(h3). 

Modified Euler integration forms the basis by which the mesh is advanced through- 
out a timestep At. The mesh points {z,(t)} are considered Lagrangian particles whose 
velocities are given by q(z(s, t ) )  from (2.2). Starting with {zi} evenly spaced along the 
vortex sheet a t  time t ,  a first approximation to the new position of the vortex sheet is 

where q(z i ( t ) )  is approximated by (2.7) and (2.9). An improved estimate is 

To maintain O(h3) accuracy, the velocities q(zl i )  must be calculated as follows. A 
redistributed mesh {zti} based on the approximation {zli} is introduced, the velocities 
q(zt i )  a t  {zt i }  are calculated from (2.7) and (2.9) and finally q(zli) is obtained by inter- 

To complete the update in time the mesh {zz i }  must be redistributed to give 
{z,(t+&)}. If only a simple Euler integration is performed, e.g. (3.3), {zli} must be 
redistributed to give {zi(t + 4t)}. After several time-steps have been computed, the 
error from simple Euler integration is 0(4t), whereas for modified Euler integration 
it is O(At2). 

In  order to calculate the velocity, q(x, ( t ) ) ,  it is necessary to know y(z,(t)) a t  the 
evenly spaced points and these values may be determined as follows. Since y = dI' /dS,  

polating d z d ,  @ti} and { Z l i } .  
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FIGURE 1. The vortex sheet behind a ring wing at t = 1.55 
with 41 mesh points along the sheet. 

where r(s) is the total circulation measured along the vortex sheet from some reference 
point, z1 say, a central-difference formula may be used, 

where r(sie) are the values of the circulation at  the points located midway between 
the evenly spaced mesh points {z i } .  If r(s) is known at  {zi}, r(siG) is easily obtained 
by interpolation. This is analogous to the procedure Fink & Soh (1978) used. However, 
if spline interpolation is used during the interpolation of the circulation to be described 
below, spline derivatives may be used in place of (3.5)) which improves the order of 
accuracy. 

In both cases, r ( z i ( t ) )  must be known. Thus the procedure in determining the change 
in y(z,(t)) depends on the ability to update I'(z,(t)). Since the mesh points are advanced 
in time as Lagrangian particles, r(zZi) = r(z,(t)) (or r(zIi)  = r ( z , ( t ) )  if simple Euler 
integration is used or when the first step of the modified Euler integration is com- 
pleted). Using chordlength as a parametrization of the vortex sheet, the new values, 
r(z,(t+ A t ) ) ,  may be obtained by the interpolation of F(zZi) (or J?(zli)), {hi) and {Asi)  
and thus y(zi ( t  + At)) is calculated as described above. 

The accuracy of the method was tested on the motion of the vortex sheet created 
by the irrotational flow circulation around a stagnant circular core. Moore & Griffith- 
Jones (1974) have shown that the flow is unstable. If a is the radius of the circular 
sheet and the total circulation around the stagnant core, the undistributed potential 
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FIGURE 2. The vortex sheet behind a, ring wing at t = 1.55 with 
61  mesh points along the sheet. 

is q5 = r0/27r for r > a, and q5 = 0 for r < 0. Consider perturbations in the position 
of sheet, r = 7(6,  t ) ,  of the form 

7 = a -t- c cos (no + wt), ( 3.6) 

and perturbations in the potential of the form 

n B  
277 rn 

q5 = -+-sin(%+&) for (3.7) 

q5 = Arnsin (n0+nt) for r < 7. (3.8) 

After linearizing, the dispersion relation is obtained as 

77 r 
zu2+w-+f4n(n- 1) = 0. 

277a2 87ra (3.9) 

Two modes were tested, n = 1, w = 0,  and n = 2, w = - I'/2a2, which are both stable. 
For these cases, A = 0,  m/47ra3 and B = er'/27~, eI'a/4, respectively. It was sufficient 
to calculate only a few steps to check that the behaviour of the error with changes in 
the arclength spacing and the time-step show the correct behaviour. Provided the 
velocity was calculated sufficiently accurately the error was O(At) for simple Euler 
integration whereas for modified Euler integration it was extremely small (round-off 
errors only were observed) since that scheme is exact for circular motion. 
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Y 

FIGURE 3. The vortex sheet behind a ring wing ctt t = 1.55 with 
91 mesh points along the sheet. 

A far more interesting test of the method is the study of the motion of a vortex sheet 
shed by the ring wing. The vortex sheet is expected to roll up into two spirals and this 
behaviour has been observed experimentally by Bofah ( 1975). Suitable non-dimensional 
variables may be chosen so that initially the vortex sheet is circular with unit radius 
and the vortex sheet strength is y(I9) = cos 8. Since the flow has a plane of symmetry 
it is possible to follow only half the number of points required to represent the complete 
sheet. Interpolation also may be done on only half the sheet using end-point conditions 
that are dictated by the symmetry. The modified Euler formula and spline interpola- 
tion were used. 

The numerical technique fails to produce good results. The calculation proceeds 
smoothly until roll-up begins; inevitably the sheet crosses itself. Moreover, as the 
number of points representing the sheet is increased, the breakdown in results occurs 
sooner. Figures 1-3 show the vortex sheet a t  t = 1-55 with N ,  the number of points, 
of 41,61 and 91. The time-step was 0.0194; smaller time-step did not change the results. 
The representation of the vortex sheet deteriorates when more points are used, con- 
trary to the expectation expressed in the results of the error analysis. The correspond- 
ing profiles in figure 4 of the circulation measured along the sheet from I9 = &r 

as functions of the arclength show an oscillatory behaviour. Bearing in mind that 
the numerical calculations show an increase in arclength with increasing N ,  the 
oscillations occur along the upper branch of the spiral. The nature of the oscillations 
is such that y(s) becomes negative, which is unphysical. 
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FIGURE 4. The circulation F(s) 
higher intercept point on the y 
points; ---, 90 points. 

along the sheet as a function of arclength s measured from the 
axis for different numbers of mesh points: 0, 40 points; x , 60 

In an attempt to determine what causes this numerical breakdown, different ways 
of implementing the method were tried, for example the less accurate scheme used 
by Fink & Soh (1978). Lagrange interpolation was used instead of spline interpolation 
and the points were evenly spaced in chordlength instead of arclength but the descrip- 
tion of the sheet still deteriorated with increasing N .  

4. Discussion of results 
The nature of these results differ from those reported by Fink & Soh (1 978) in their 

study of the roll-up of a sheet shed by an elliptically loaded wing. The reason is simple: 
Fink & Soh used a single vortex to represent the innermost turns of the spiral and the 
circulation of this vortex grows so large that it essentially dominates the flow field 
near the spiral. Their smooth results for a large number of points depend on this 
approximation (Baker 1977). On the other hand, the motion of a vortex sheet shed 
by a ring wing permits a direct study of their method. 

Before exploring the possible reasons for the failure in obtaining reliable results, 
it  is important to remember that questions concerning the existence or uniqueness of 
solutions to the equations describing vortex sheet motion have not been fully resolved. 
Recently Moore (1 979) has presented mathematical arguments demonstrating the 
possibility that the problem is ill-posed. If this is the case, it is clear that viscosity 
must be incorporated and a thin layer of vorticity must replace the vortex sheet. 

The stability of a vortex sheet is generally uncertain. The plane constant vortex 
sheet is known to be unstable (the Kelvin-Helmholtz instability), with disturbances 
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having the smallest wavelengths growing the fastest. Small-scale instabilities may 
play an important role in the roll-up of vortex sheets (Pierce 1966). On the other hand, 
the effects of curvature and stretching of the sheet may be stabilizing (Moore 1976). 

Thus it is possible that the difficulties experienced in following the vortex sheet 
numerically may be the consequence of the nature of the solutions to the equations 
describing vortex-sheet motion. If the vortex sheet shed by a ring wing is well defined 
and stable during its motion, the method is a t  fault. There are several possible ways 
whereby the method may prove inadequate. 

One reason that the sheet crosses itself is that not enough points are used to resolve 
the structure of the sheet as different parts of it approach one another, leading to 
large errors in the calculation of the velocity (Maskew 1977). However, this cannot 
fully explain the deterioration in the description of the vortex sheet as the number of 
points is increased. Perhaps the vortex-sheet curvature changes rapidly in time, 
requiring a substantially larger number of points to fully describe the sheet. To test 
this idea proves too costly for the resources of this researcher. Instead a different 
numerical approach based on the ‘ cloud in cell ’ technique was used to explore the 
small-scale behaviour of the vortex sheet (Baker 1979). Small-scale instabilities 
generated by the numerical approximations rapidly destroyed the description of the 
sheet but the larger-scale motion is reproduceable and looks similar to the experimental 
results of Pierce (1966). Therefore, it is possible that small-scale motions do play a 
part in the roll-up of the sheets, and that Fink & Soh’s method will be too costly to 
adequately account for them. 

The numerical scheme may be unstable. Because of the complexity of the scheme 
it proves difficult to study its stability analytically. The basic method 
simple one-dimensional model. The equation 

-+ ar (E)2 - = 0 
at 

with the initial condition 

along the characteristics 

r(s) = 1 - cos (s) was solved by integrating 

_ -  - 0  
d r  
dt 

was tried on a 

(4.1) 

Thus equation (4.3) models equation (2.3).  The results show smooth behaviour up to 
t = 3, when the solution becomes multivalued. Of course, this isonlyaone-dimensional 
analogue and so curvature effects are ignored but it does give some reason to believe 
that the scheme is basically stable. 

In  fact the redistribution process can be expected to prevent small-scale instabilities 
from developing or a t  least to retard their growth. The redistribution process may 
induce other unphysical effects. This typically occurs when points are ‘moved’ 
through a larger distance by the redistribution process than by the velocity field. An 
example is given in Baker ( 1977) in which the roll-up of the sheet shed by an elliptically 
loaded wing, unwinds. Sarpkaya (1975) also report difficulties with the method, but 
no details are provided. 
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In  conclusion, no definitive reason for the breakdown in result is known. Fink & 
Soh’s (1978) technique is not reliable when used to study the roll-up of vortex sheets. 

I would like to thank Dr Moore of Imperial College, London, for useful comments on 
this work. He also brought to my attention some results of Van de Vooren (1965) which 
show the breakdown in numerical computations of the Kelvin-Helmholtz instability 
despite accurate calculation of the principal-value integral in (2.2). 
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